THIS HAS BEEN ANOTHER BIG YEAR for both the customers and employees of Tacoma Water. Just one year after the centennial of establishing Tacoma’s Green River water supply, we marked another major milestone: filtering our primary water source.

Since 2012, Tacoma Water has been building the Green River Filtration Facility in east King County. That facility is now done, and filtered water is flowing through our two major pipelines to people in Tacoma, south King County and throughout Pierce County.

We were able to bring that important improvement to you thanks to extraordinary project management from our own team as well as the design and construction teams we worked with. They built a plant that’s uniquely suited to handle our water supply, infrastructure and future needs. And, the filtration facility cost about $30 million less than the original budget estimate. That cost savings and the low-interest loans we secured to fund the project will result in lower long-term rates than we’d originally anticipated.

Long-term benefits

Filtering the water provides one more level of safety for everyone who drinks it. Filtration also allows us to use the Green River year round. In the past, when stormy conditions turned up sediment and debris in the river, we turned to our wells instead of using river water. Now, we won’t need to do that nearly as often in the winter.

The Green River has been a high-quality, low-cost water source for the last 100 years and, with this new treatment, it will provide an even safer, cleaner and more reliable supply for generations to come.

The milestone of delivering filtered Green River water to our customers is certainly the highlight of 2014, but not the only progress made. Significant work throughout Tacoma Water advanced our management of aging infrastructure, use of new technology and financial sustainability. I’m pleased to note that Tacoma Water staff continues to work with pride and a commitment to providing you clean, reliable water now and in the future.
MAKING SECURITY A PRIORITY

From simple fixes like improved signage to complex projects like protecting the water system from an earthquake, Tacoma Water is taking a hard look at security and a range of vulnerabilities in its system. The examination is called a vulnerability assessment, and it’s the new standard in analyzing an organization when it comes to all types of hazards, such as:

- Terrorism and vandalism
- Unintentional man-made acts, like a chemical spill or train crash
- Acts of nature, like an earthquake
- Cascading events, like an earthquake that causes a landslide
- Power outages, epidemics
- Connection failures, like the failing of a pipeline that feeds pump stations

Tacoma Water is working with a consultant on the assessment, which started with visits to dozens of our facilities. The focus was on two areas – one security minded, like improvements to cameras, alarm systems and locks. The second involved looking at the structural side of things from a seismic perspective. We have to ask: Can we bring things up to standard? Is this structure beyond its useful life?

The plan for moving forward will contain a prioritized list of ways to better secure the system and improve reliability with recommendations ranked by what’s most critical and cost effective.

Based on that analysis, the utility will get a better understanding of how much money it will cost to increase our resiliency, and then we’ll start asking those hard questions about cost and value. A structure can be built to survive almost anything, but it can cost a great deal of money. As stewards of rate payers’ money, we have to spend the right amount of money to get the right amount of reliability.
TREATING THE WATER, THEN AND NOW

In 1913, Tacoma Water first provided drinking water from the Green River, adding only chlorine for disinfection.

We were following the revolutionary trend started a few years before across the country, where water suppliers were experimenting with ways to treat the water to improve public health. In 1908, the water supply in Jersey City, New Jersey, became the first to benefit from a continuous use of chlorine for drinking water disinfection. The use of chlorine in drinking water quickly spread.

With the addition of chlorine, Tacoma’s drinking water and the health of its customers dramatically improved. Our original chlorine treatment system was fairly simple and operated effectively for many years. Then, in 1974, new standards required Tacoma Water to address the dirt and sediment that at times made the Green River cloudy, especially during storms. As a result, groundwater wells were drilled in the Green River watershed, and a new chlorine system, storage tank and well water blending system were built in 1978.

In response to a public vote, additional treatment facilities were built to add fluoride in the early 1990s. Shortly thereafter, in 1996, Tacoma Water began raising the pH of the water by adding small amounts of caustic soda, which helped prevent household plumbing corrosion.

In 2005, a new chemical treatment building was completed at Tacoma Water Headworks, replacing the gas chlorine system with a liquid system that was much safer for staff to operate. In 2007, ozone treatment was added to the mix to improve taste and odor and provide even better disinfection.

In 2006, the water treatment landscape was poised to change again, this time in response to a federal requirement to treat for the organism cryptosporidium. In early 2010, the decision was made to build the Green River Filtration Facility, and construction began in 2012. Tacoma Water began providing filtered water to customers on Dec. 16, 2014.
UPDATE BRINGS IMPROVEMENTS TO WATER INTAKE

In 2014, a quiet but critical construction project was going on right next door to the Green River Filtration Facility, one that will help the new facility perform at its peak capacity all year long.

Over the course of the year, we improved the intake facility, which captures incoming river water and brings it to the filtration facility.

A little background: About 95% of Tacoma Water’s supply comes from the Green River; the rest comes from the river’s North Fork well system and wells in South Tacoma. Prior to construction of our new Green River Filtration Facility, we relied on that North Fork well water during the winter months, when the Green River is muddy with sediment and debris stirred up by storms.

As we worked to design and build the filtration facility, we needed to make sure that the intake was robust enough to handle Green River water all year, no matter the weather or water conditions.

With the improvements, we have:

- Ensured fish screens are highly reliable during periods of high turbidity and debris collection
 - The screens that prevent fish from entering the water system can get clogged with debris in the winter, leaving it in danger of failing. The old brush system took 30 minutes to complete a cleaning cycle, which was too long when the river is especially dirty. The new brush system takes three minutes to clean the screen.
- Routed incoming sediment back to the river
- Flow vanes were added to the settling basin to improve its efficiency.
- A water jet system stirs up sediment and debris that collects in the fish bypass channel so that it is carried back to the river.
- A sediment collection system was installed behind the fish screens to route any sediment passing through the screens back to the river.
- Improved reliability of the fish trap and sort facility
 - Water to operate the trap and sort facility is supplied by the intake. By increasing the reliability of the intake, we made the fish trap and sort facility more reliable.
YOUR WATER: FILTERED AT THE SOURCE

Yesterday’s water was good. Today’s is better. That’s thanks to Tacoma Water’s new Green River Filtration Facility, which brings improved reliability, quality and safety to the drinking water.

Until now, the Green River — Tacoma Water’s primary water source for the last 100 years — was one of the few remaining unfiltered surface water supplies in the U.S. But in 2006, the Environmental Protection Agency required that water utilities provide treatment to protect against cryptosporidium, a pathogen that can cause disease in humans.

To determine its course, Tacoma Water embarked on a rigorous analysis of treatment options and widespread public outreach. That work resulted in the decision to filter the water and was followed with an ambitious plant construction schedule of about two and half years. At the end of 2014, Tacoma Water had completed its largest capital project in history — one that can deliver up to 168 million gallons of filtered water in a day.

When I started working with Tacoma Water in 2002, the Green River Headworks staff was pretty small; we had three operators, a part-time mechanic and five watershed management staff members. To treat the water, we used a gas chlorination system, fluoride and caustic feed systems, and a well water blending system that had served us since the late 1970s. Our fish handling facility construction was well underway. Pipeline 5, which would double the amount of water we could supply, was almost complete.

Since then, we’ve completed several more projects that make the Green River source more reliable and improve the quality of water we deliver to our customers. We’ve added ozone for taste and odor control and a new chemical feed facility.

Of course, we’ve just completed the filtration facility — a water treatment milestone, and a thrill for me personally. Not many people get to be part of starting up a plant, and it’s something that I take a lot of pride in.

With those improvements, we needed to increase our operations and maintenance staff from the original five members to 16 and become a 24/7 operation. Though the complexities of bringing our customers high-quality water have increased, so has the quality of water we deliver. I’m proud to be part of this hard-working team.

As a result of filtration, the water is improved in these ways:

- It’s protected from many contaminants, including cryptosporidium.
- It has less sand and silt.
- It will be more reliable.

While the estimated price tag for the filtration facility started out at $217 million, it will come in around $187 million, with partnering utilities paying for about one-third of the costs.

Filtering the water provides one more level of safety over the long term for everyone who drinks it.

Photos, left to right: Plate settlers help settle particulate out of the water; 108-inch valve that isolates flow into a transmission pipeline; tank where 3 million gallons of well water can be held before it is filtered; the completed filtration plant.

As a result of filtration, the water is improved in these ways:

- It’s protected from many contaminants, including cryptosporidium.
- It has less sand and silt.
- It will be more reliable.

While the estimated price tag for the filtration facility started out at $217 million, it will come in around $187 million, with partnering utilities paying for about one-third of the costs.

Filtering the water provides one more level of safety over the long term for everyone who drinks it.

Photos, left to right: Plate settlers help settle particulate out of the water; 108-inch valve that isolates flow into a transmission pipeline; tank where 3 million gallons of well water can be held before it is filtered; the completed filtration plant.

As a result of filtration, the water is improved in these ways:

- It’s protected from many contaminants, including cryptosporidium.
- It has less sand and silt.
- It will be more reliable.

While the estimated price tag for the filtration facility started out at $217 million, it will come in around $187 million, with partnering utilities paying for about one-third of the costs.

Filtering the water provides one more level of safety over the long term for everyone who drinks it.

Photos, left to right: Plate settlers help settle particulate out of the water; 108-inch valve that isolates flow into a transmission pipeline; tank where 3 million gallons of well water can be held before it is filtered; the completed filtration plant.
FOCUS ON OPERATION AND MAINTENANCE

Now that the Green River Treatment Facility is fully operational, the focus will change to making the most of how it’s run and maintained. Instead of concentrating on specific pieces of equipment, we’ll think more about maintaining the system as a whole. It’s a subtle shift, but an important one that requires an understanding of each process in the filtration facility and the importance of each piece of equipment.

While the plant was being built, a Tacoma Water team of mechanics, engineers, operators and support staff documented the various processes and equipment in it. Particular attention was paid to the reason a piece of equipment might fail and what the consequence of failure would be.

The team identified required equipment maintenance and stored that information in an electronic system. The system will allow tracking of equipment history, failures, testing measurements, maintenance activities and costs of equipment, enabling us to make better decisions to keep the system running. That type of work is changing how we plan and prioritize our work.

By performing the right task at the right time, Tacoma Water is better able to produce safe, reliable drinking water while providing the highest value to customers.

Water pumps at the filtration facility have equipment installed on them that allows us to detect and track defects. We use that data to decide whether it’s better to fix the equipment or replace it.
KEEPING YOU HEALTHY

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline, (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. Environmental Protection Agency/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are also available from the Safe Drinking Water Hotline, (800) 426-4791.

DELIVERING YOUR WATER

Most of your water comes from the Green River in east King County. The Green River Watershed is a 231-square-mile forested area that serves as a collection point for melting snow and seasonal rainfall in an uninhabited area of the Cascade Mountains between Chinook and Snoqualmie passes. Tacoma Water owns about 11% of the watershed land along the river.

Through agreements with other landowners, we limit watershed access and carefully control activities, such as recreation, road maintenance and logging.

We supplement the Green River supply with groundwater from more than 20 additional wells to meet peak summer demands. Most are in Tacoma city limits.
REPORTING CHEMICALS IN YOUR WATER

The water quality table here shows substances we identified at the water source, treatment plant and distribution system during our most recent sampling. The table does not include the other 59 volatile organic chemicals and 55 synthetic organic chemicals we tested for—including many industrial chemicals, herbicides and pesticides—but did not find.

** *Arsenic level of 0.05 ppb was detected in the Portland Avenue Well in 2013. This source was not used in 2014.

For more information, contact us at (253) 502-8215 or waterquality@cityoftacoma.org.

DEFINITIONS

(MCL) Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available technology.

(MCLG) Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.

ppm – one part per million

ppb – one part per billion

NTU – Nephelometric Turbidity Unit is a standard to measure water clarity.

AL – Action Level is the concentration which, if exceeded, triggers treatment or other requirements which a water system must follow. Action Levels are reported at the 90th percentile for homes at greatest risk.

MRL – Minimum Reporting Level, also known as Method Reporting Limit: The smallest amount of a substance that can be reliably quantitated in a sample.

ND – Not Detected, result was below the laboratory minimum detection level.

TT – Treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

* Violations

Inadequately treated water may contain disease-causing organisms. These organisms include bacteria, viruses, and parasites, which can cause symptoms such as nausea, cramps, diarrhea, and associated headaches. Finished water turbidity exceeded the 5 NTU limit on 11/19/2014 for approximately 6 minutes. The high turbidity water was collected and disposed of at the McMillin Reservoir complex. Only 7 customers closest to the Tacoma Water Treatment Facility were affected and were immediately notified. No other Tacoma Water customers were affected.

Tacoma Water entered into an agreement with the Washington State Department of Health under a notice for — including many industrial chemicals, herbicides and pesticides—but did not find.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Highest Level Allowed (MCL)</th>
<th>Highest Level Detected</th>
<th>Ideal Goals (MCLG)</th>
<th>Range of Level Detected or # exceed AL</th>
<th>Regulation Met?</th>
<th>Potential Sources of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10 ppb</td>
<td>7 ppb **</td>
<td>0</td>
<td>0 - 7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Barium</td>
<td>2 ppm</td>
<td>0.070 ppm</td>
<td>2 ppm</td>
<td>0 - 0.070 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Chromium</td>
<td>100 ppb</td>
<td>2 ppb</td>
<td>100 ppb</td>
<td>0 - 2 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Ethyleneure</td>
<td>700 ppb</td>
<td>0.82 ppb</td>
<td>700 ppb</td>
<td>0 - 0.82 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nickel</td>
<td>100 ppb</td>
<td>3 ppb</td>
<td>100 ppb</td>
<td>0 - 3 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10 ppm</td>
<td>4.73 ppm</td>
<td>10 ppm</td>
<td>0 - 4.73 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Total Alumes</td>
<td>10 ppm</td>
<td>0.0055 ppm</td>
<td>10 ppm</td>
<td>0 - 0.0055 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5 ppb</td>
<td>1.7 ppb</td>
<td>5 ppb</td>
<td>0 - 1.7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>R-228</td>
<td>5 µCiL</td>
<td>1.3 ± 0.3 µCiL</td>
<td>0</td>
<td>0 - 1.3 µCiL</td>
<td>Yes</td>
<td>Decaying of natural deposits</td>
</tr>
<tr>
<td>Chlorine</td>
<td>not regulated</td>
<td>1.16 ppb</td>
<td>not regulated</td>
<td>0 - 1.16 ppb</td>
<td>not regulated</td>
<td>Industrial contamination</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4 ppm</td>
<td>0.76 ppm</td>
<td>4 ppm</td>
<td>0.02 - 6.76 ppm</td>
<td>Yes</td>
<td>Soil erosion</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 NTU</td>
<td>2.03 NTU</td>
<td>5 NTU</td>
<td>0.71 - 2.03 ppm</td>
<td>Yes</td>
<td>Treatment additive</td>
</tr>
</tbody>
</table>

UNREGULATED AT THE GROUNDWATER SOURCES

EPA UNREGULATED CONTAMINANT MONITORING (UCMR3)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Highest Level Allowed (MCL)</th>
<th>Highest Level Detected</th>
<th>Ideal Goals (MCLG)</th>
<th>Range of Level Detected or # exceed AL</th>
<th>Regulation Met?</th>
<th>Potential Sources of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10 ppb</td>
<td>7 ppb **</td>
<td>0</td>
<td>0 - 7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Barium</td>
<td>2 ppm</td>
<td>0.070 ppm</td>
<td>2 ppm</td>
<td>0 - 0.070 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Chromium</td>
<td>100 ppb</td>
<td>2 ppb</td>
<td>100 ppb</td>
<td>0 - 2 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Ethyleneure</td>
<td>700 ppb</td>
<td>0.82 ppb</td>
<td>700 ppb</td>
<td>0 - 0.82 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nickel</td>
<td>100 ppb</td>
<td>3 ppb</td>
<td>100 ppb</td>
<td>0 - 3 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10 ppm</td>
<td>4.73 ppm</td>
<td>10 ppm</td>
<td>0 - 4.73 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Total Alumes</td>
<td>10 ppm</td>
<td>0.0055 ppm</td>
<td>10 ppm</td>
<td>0 - 0.0055 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5 ppb</td>
<td>1.7 ppb</td>
<td>5 ppb</td>
<td>0 - 1.7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>R-228</td>
<td>5 µCiL</td>
<td>1.3 ± 0.3 µCiL</td>
<td>0</td>
<td>0 - 1.3 µCiL</td>
<td>Yes</td>
<td>Decaying of natural deposits</td>
</tr>
<tr>
<td>Chlorine</td>
<td>not regulated</td>
<td>1.16 ppb</td>
<td>not regulated</td>
<td>0 - 1.16 ppb</td>
<td>not regulated</td>
<td>Industrial contamination</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4 ppm</td>
<td>0.76 ppm</td>
<td>4 ppm</td>
<td>0.02 - 6.76 ppm</td>
<td>Yes</td>
<td>Soil erosion</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 NTU</td>
<td>2.03 NTU</td>
<td>5 NTU</td>
<td>0.71 - 2.03 ppm</td>
<td>Yes</td>
<td>Treatment additive</td>
</tr>
</tbody>
</table>

REGULATED AT THE TREATMENT PLANT

REGULATED IN THE DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Disinfection byproducts</th>
<th>Highest running annual average allowed</th>
<th>Our running annual average</th>
<th>MCLG</th>
<th>Range of level Detected</th>
<th>Regulation Met?</th>
<th>Potential sources of contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethane</td>
<td>80 ppb average</td>
<td>15.1 ppb average</td>
<td>not applicable</td>
<td>0.67 - 46 ppb</td>
<td>Yes</td>
<td>Disinfection interaction</td>
</tr>
<tr>
<td>Haloacetic Acid</td>
<td>60 ppb average</td>
<td>20.9 ppb average</td>
<td>not applicable</td>
<td>0 - 43 ppb</td>
<td>Yes</td>
<td>Disinfection interaction</td>
</tr>
<tr>
<td>Bromate</td>
<td>10 ppb average</td>
<td>0</td>
<td>not applicable</td>
<td>0</td>
<td>Yes</td>
<td>Disinfection interaction</td>
</tr>
</tbody>
</table>

REGULATED AT THE CONSUMERS’ TAP

Lead & Copper: sampled in 2013; required once every 5 years

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Highest Level Allowed (MCL)</th>
<th>Highest Level Detected</th>
<th>Ideal Goals (MCLG)</th>
<th>Range of Level Detected or # exceed AL</th>
<th>Regulation Met?</th>
<th>Potential Sources of contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10 ppb</td>
<td>7 ppb **</td>
<td>0</td>
<td>0 - 7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Barium</td>
<td>2 ppm</td>
<td>0.070 ppm</td>
<td>2 ppm</td>
<td>0 - 0.070 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Chromium</td>
<td>100 ppb</td>
<td>2 ppb</td>
<td>100 ppb</td>
<td>0 - 2 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Ethyleneure</td>
<td>700 ppb</td>
<td>0.82 ppb</td>
<td>700 ppb</td>
<td>0 - 0.82 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nickel</td>
<td>100 ppb</td>
<td>3 ppb</td>
<td>100 ppb</td>
<td>0 - 3 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10 ppm</td>
<td>4.73 ppm</td>
<td>10 ppm</td>
<td>0 - 4.73 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Total Alumes</td>
<td>10 ppm</td>
<td>0.0055 ppm</td>
<td>10 ppm</td>
<td>0 - 0.0055 ppm</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>5 ppb</td>
<td>1.7 ppb</td>
<td>5 ppb</td>
<td>0 - 1.7 ppb</td>
<td>Yes</td>
<td>Natural erosion</td>
</tr>
<tr>
<td>R-228</td>
<td>5 µCiL</td>
<td>1.3 ± 0.3 µCiL</td>
<td>0</td>
<td>0 - 1.3 µCiL</td>
<td>Yes</td>
<td>Decaying of natural deposits</td>
</tr>
<tr>
<td>Chlorine</td>
<td>not regulated</td>
<td>1.16 ppb</td>
<td>not regulated</td>
<td>0 - 1.16 ppb</td>
<td>not regulated</td>
<td>Industrial contamination</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4 ppm</td>
<td>0.76 ppm</td>
<td>4 ppm</td>
<td>0.02 - 6.76 ppm</td>
<td>Yes</td>
<td>Soil erosion</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 NTU</td>
<td>2.03 NTU</td>
<td>5 NTU</td>
<td>0.71 - 2.03 ppm</td>
<td>Yes</td>
<td>Treatment additive</td>
</tr>
</tbody>
</table>

For more information, contact us at (253) 502-8215 or waterquality@cityoftacoma.org.
We treat our Green River water supply with ozone. Chlorine gas is never added to any part of the Green River Water Treatment Plant system. Chlorine gas is a gas, not a liquid which is added to a system to kill bacteria or other waterborne pathogens. Ozone is colorless, odorless and volatile and is released as a gas into the water.
WATER SMART

Water conservation makes it possible to use existing supplies more efficiently and provides opportunities to develop our regional water supply and fish enhancement programs. This helps ensure enough water remains available regionally to meet our needs and the needs of our community, as well as those of fish, animals and the environment.

The Washington State Department of Health requires municipal water suppliers to establish a water conservation goal and report on its progress annually. Tacoma Water’s conservation goal is to reduce the amount of water each person uses by 8.4% between Jan. 1, 2011, and Jan. 1, 2018. With the focus on “smart use” of water, we know that working together we can achieve that goal. Please see TacomaWater.com/smart to learn ways you can be “water smart.”

TACOMA PUBLIC UTILITY BOARD

The Tacoma Public Utility Board is the governing and policy-making body for Tacoma Water. To become involved in water quality decisions, you may participate in public meetings, held on the second and fourth Wednesdays of each month at 6:30 p.m. in the Tacoma Public Utilities Auditorium, 3628 S. 35th St. in Tacoma.

YOUR WATER QUALITY REPORT

This report contains information about your drinking water. Congress and the EPA require us to inform you annually about your drinking water and its impacts. Although most content in this report is required, we are pleased to share additional helpful information about your water and the work we do to get it to you.

We produced and mailed this report for about 37 cents per customer.

CONTACT INFORMATION

Water Quality
(253) 502-8215
waterquality@cityoftacoma.org

Conservation
(253) 502-8723
conservation@cityoftacoma.org

Cross Connections Control / Backflow Prevention
(253) 502-8215
backflow@cityoftacoma.org

Rates
(253) 502-8913
National Radon Hotline
(800) 557-2366
Washington State Department of Health
health.doh.wa.gov/ehp

U.S. Environmental Protection Agency
Safe Drinking Water Hotline
(800) 426-4791
epa.gov/safewater

The hotline and EPA website offer information about drinking water contaminants and their potential health effects, as well as guidelines from the U.S. Centers for Disease Control and Prevention about appropriate ways to reduce risk of infection by cryptosporidium and other microbial contaminants. Both sources also offer information about lead in drinking water, testing methods and steps you can take to minimize exposure.

WATER SMART

Water conservation makes it possible to use existing supplies more efficiently and provides opportunities to develop our regional water supply and fish enhancement programs. This helps ensure enough water remains available regionally to meet our needs and the needs of our community, as well as those of fish, animals and the environment.

The Washington State Department of Health requires municipal water suppliers to establish a water conservation goal and report on its progress annually. Tacoma Water’s conservation goal is to reduce the amount of water each person uses by 8.4% between Jan. 1, 2011, and Jan. 1, 2018. With the focus on “smart use” of water, we know that working together we can achieve that goal. Please see TacomaWater.com/smart to learn ways you can be “water smart.”

TACOMA PUBLIC UTILITY BOARD

The Tacoma Public Utility Board is the governing and policy-making body for Tacoma Water. To become involved in water quality decisions, you may participate in public meetings, held on the second and fourth Wednesdays of each month at 6:30 p.m. in the Tacoma Public Utilities Auditorium, 3628 S. 35th St. in Tacoma.

YOUR WATER QUALITY REPORT

This report contains information about your drinking water. Congress and the EPA require us to inform you annually about your drinking water and its impacts. Although most content in this report is required, we are pleased to share additional helpful information about your water and the work we do to get it to you.

We produced and mailed this report for about 37 cents per customer.

CONTACT INFORMATION

Water Quality
(253) 502-8215
waterquality@cityoftacoma.org

Conservation
(253) 502-8723
conservation@cityoftacoma.org

Cross Connections Control / Backflow Prevention
(253) 502-8215
backflow@cityoftacoma.org

Rates
(253) 502-8913
National Radon Hotline
(800) 557-2366
Washington State Department of Health
health.doh.wa.gov/ehp

U.S. Environmental Protection Agency
Safe Drinking Water Hotline
(800) 426-4791
epa.gov/safewater

The hotline and EPA website offer information about drinking water contaminants and their potential health effects, as well as guidelines from the U.S. Centers for Disease Control and Prevention about appropriate ways to reduce risk of infection by cryptosporidium and other microbial contaminants. Both sources also offer information about lead in drinking water, testing methods and steps you can take to minimize exposure.

TACOMA WATER.COM

2014 WATER QUALITY REPORT | 11

WATER SMART

Water conservation makes it possible to use existing supplies more efficiently and provides opportunities to develop our regional water supply and fish enhancement programs. This helps ensure enough water remains available regionally to meet our needs and the needs of our community, as well as those of fish, animals and the environment.

The Washington State Department of Health requires municipal water suppliers to establish a water conservation goal and report on its progress annually. Tacoma Water’s conservation goal is to reduce the amount of water each person uses by 8.4% between Jan. 1, 2011, and Jan. 1, 2018. With the focus on “smart use” of water, we know that working together we can achieve that goal. Please see TacomaWater.com/smart to learn ways you can be “water smart.”

TACOMA PUBLIC UTILITY BOARD

The Tacoma Public Utility Board is the governing and policy-making body for Tacoma Water. To become involved in water quality decisions, you may participate in public meetings, held on the second and fourth Wednesdays of each month at 6:30 p.m. in the Tacoma Public Utilities Auditorium, 3628 S. 35th St. in Tacoma.

YOUR WATER QUALITY REPORT

This report contains information about your drinking water. Congress and the EPA require us to inform you annually about your drinking water and its impacts. Although most content in this report is required, we are pleased to share additional helpful information about your water and the work we do to get it to you.

We produced and mailed this report for about 37 cents per customer.

CONTACT INFORMATION

Water Quality
(253) 502-8215
waterquality@cityoftacoma.org

Conservation
(253) 502-8723
conservation@cityoftacoma.org

Cross Connections Control / Backflow Prevention
(253) 502-8215
backflow@cityoftacoma.org

Rates
(253) 502-8913
National Radon Hotline
(800) 557-2366
Washington State Department of Health
health.doh.wa.gov/ehp

U.S. Environmental Protection Agency
Safe Drinking Water Hotline
(800) 426-4791
epa.gov/safewater

The hotline and EPA website offer information about drinking water contaminants and their potential health effects, as well as guidelines from the U.S. Centers for Disease Control and Prevention about appropriate ways to reduce risk of infection by cryptosporidium and other microbial contaminants. Both sources also offer information about lead in drinking water, testing methods and steps you can take to minimize exposure.

TACOMA WATER.COM

2014 WATER QUALITY REPORT | 11