

# Tacoma Water Pipeline No. 1 Tacoma Public Utilities Public Utility Board Study Session

October 23, 2019

Presentation by: Michael Washington – Principal Engineer <u>mwashing@cityoftacoma.org</u> /253-502-8862

# **Presentation Overview**

- Pipeline No. 1 Overview
- Problem Statement
- Regulatory Drivers
- Plan
- Potential Long Term Costs
- Schedule



# Pipeline No. 1 Overview



#### **Pipeline Basic Information**

3

Length: 27 miles Pipe Diameter Size Range: 30" to 78" Material: Steel and Concrete

TACOMA DUBLIC UTILITIES

# **Problem Statement**

System and operational changes have reduced the flow transferred by Pipeline No. 1 resulting in portions of the pipeline to become unpressurized which increases the potential for infiltration. How can Tacoma Water address the pressurization issue on Pipeline No. 1 to prevent infiltration?



| Pipeline Flow Rate (MGD) | % of Pipeline Unpressurized |  |
|--------------------------|-----------------------------|--|
| 12                       | 41%                         |  |
| 24                       | 33%                         |  |
| 36                       | 24%                         |  |
| 48                       | 16%                         |  |
| 60                       | 3%                          |  |

TACOMA DUBLIC UTILITIES

# **Regulatory Drivers**

#### **Regulatory Items Definitions/Findings GROUP A – PUBLIC WATER** Transmission lines defined in WAC 246-290-010 SUPPLY SYSTEMS shall be designed to maintain greater than or equal WAC 246-290-230(9) to five psi (35 kPa) during normal operations, except when directly adjacent to storage tanks, and shall be sized according to a hydraulic analysis... 2018 SANITARY SURVEY Significant Deficiency – A deficiency that directly FINDINGS FROM WASHINGTON creates a significant public health risk. STATE DEPARTMENT OF HEALTH "Please identify the need to develop an approach to pressurizing the pipeline in your current Capital Improvement Program (CIP) and continue to prioritize the replacement of Pipeline 1 as you update your CIP."



# The Plan

# **Comprehensive Evaluation**

- Pipeline Assessment (Condition, hydraulics)
- Develop Alternatives (Technical requirements, lifecycle cost)
- Risk Quantification (Support phased, strategic scheduling)
- Develop financing plan
- Finalize Implementation Plan for pressurizing the pipeline



# **Potential Long Term Costs**

**Potential Cost** 

• Range \$60 – \$150 million over a 20 year period.



# Schedule

## **Approval of Jacobs Contract to Develop the Plan**

• Public Utility Board Meeting 12/04/2019

## **Development of the Plan**

- Notice To Proceed January 2020
- Plan Completion December 2020



#### Serving our customers



# **Transportation Electrification Plan**

Cam LeHouillier Energy Research and Development



# **DRIVER** Electricity is less expensive EVs need less maintenance

# **ENVIRONMENT**

Reduced GHG emissions Domestic source of energy Improved air quality, less noise

UTILITY

Increased utility revenues

# Current market

- Early adoption stage (<3% of new cars in WA)
- Economics outlook of EVs is good
  - Cheap and clean renewable power, battery cost falling
- Public awareness is still low, many questions
- A period of innovation best practices have not been set



# HB 1512 - Clarified Utility Role

## Self Directed

"...each electric utility, depending on its unique circumstances, can determine its appropriate role in the development of electrification of transportation infrastructure."

## **Clarifies what is permitted**

"...legislative clarity is important for utilities to offer programs and services, including incentives, in the electrification of transportation..."

## Transportation electrification is voluntary

"The governing authority...**may** adopt an electrification of transportation plan..."

# HB 1512 - Clarified Utility Role

## Suggested topics of consideration

"...the governing authority **may** consider some or all of the following..."

- 1. Applicability of multiple options for electrification of transportation across all customer classes
- 2. The impact of electrification on the utility's load, the use of demand response or load management including direct load control and dynamic pricing
- 3. System reliability and distribution system efficiencies
- 4. Interoperability concerns for software or hardware
- 5. Overall customer experience

# HB1512 - Spending Constraints

## **Gift of Public Funds Prohibitions**

- Each program must still adhere to the constitutional prohibitions against "gifts of public funds" as interpreted in case law to not be a donative act (except in cases of "poor and infirm")
- Satisfied by a Ratepayer Impact Measure (RIM) test

## Cost cap

"...utility outreach and investment in the electrification of transportation infrastructure does not increase net costs to ratepayers in excess of one-quarter of one percent."

 Interpreted to mean the sum of program costs net of projected benefits plus general expenses explicitly used for programs must not exceed 0.25% of operating expenses for the biennium.

# Question of governance

## Legislative intent:

- Removes a perceived legal obstacle
- Voluntary and self-directed
- Requires oversight by governing body
- Flexibility in how topics are considered, funds are spent

Required but Permissive Authority

# Reality of the early market:

- Technology is continually changing
- Environmental policy is progressing
- Opportunities for partnerships and funding are fleeting
- Impractical for Board approval of program design and delivery

Operational Flexibility

# The Strategic Plan

- Contains the strategic vision
- Provides guiding principles
- Codifies interpretation and compliance with HB 1512
- Sets the role of the utility
- Contributes to organizational clarity and consistency
- Establishes governance process
  - Public Utility Board approval of Strategic Plan, review on demand
  - Annual review of Action Plan
  - Describes internal processes for program design and delivery
- Public Input process before adoption

# The Action Plan

- Annual update on results of previous year efforts
- Specifies areas of focus for the utility
- Previews program design and delivery for next year
- Aligned with the Strategic Plan
- Not explicitly adopted by the Public Utility Board to provide operational flexibility
- Addresses the "five areas to consider"
- Biennial public input process

# **Next Steps**

Oct 23, 2019 Public Utility Board has first draft of the Strategic and Action Plans

## Public Process:

Nov 6, 2019 Presentation to Infrastructure, Planning and Sustainability

Dec/Jan 2020 Public Meeting with key stakeholders

Jan 2020 Opportunity to comment via website

Feb 2020Final document including comments from PUBand Public Process presented for approval

# **Questions?**





# **Our Energy Future Series**

#### **Session 3: Resources**

Rachel Clark Resource Planning Manager



# Review IRP Process Overview





#### Our Resources

4

Other Resource Options

2

3

Resource Options: BPA

Our Resource Needs in the Future

5 6 Next Steps

# **Our Resources**

Section 1

# **Our Resources Today**



## Section 1: Our Resources Our Hydro Projects



- 63% of Tacoma's average generation
- Total generating capacity = 466MW
- Significant storage and flexibility at Mossyrock
- Continuous outflow at Mayfield
- Diminished storage at Cowlitz due to Riffe Lake upper seismic operating limit



- 22% of Tacoma's average generation
- Total generating capacity = 116MW
- Limited storage and some shaping flexibility at Alder
- Continuous outflow at LaGrande



- 12% of Tacoma's average generation
- Total generating capacity = 135MW
- Flexible when there are sufficient flows



- 2% of Tacoma's average generation
- Total generating capacity = 13MW
- Run-of-river operations

## Bonneville Power Administration (BPA) Purchased Power

#### **Overview**

- Tacoma Power has been a BPA customer since 1940
- BPA is a Federal Power Marketing Agency
  - ✓ 21 US Army Corp of Engineer Dams (14,650 MW)
  - ✓ 10 Bureau of Reclamation Dams (7,800 MW)
  - ✓ Columbia Generating Station (Nuclear, 1,100 MW)
  - ✓ Several Wind Generation contracts (58 aMW)
- Power is sold at cost (Currently ~ \$32/MWh)
- Tacoma Power is BPA's 4th largest customer (~\$120M/year, ~5.5% of BPA's total load)
- Current Contract Expires September 2028



## **BPA Slice/Block Product**



# Columbia Basin Hydro and Grant County



#### **Columbia Basin Hydro**

- 5 Irrigation Canals (Staggered Terms 2022-2026)
- ~27 aMW in months of March through October
- Pricing (~\$29/MWh) = Cost (~\$12/MWh) + Incentive Payment (~\$17/MWh)



#### **Grant County Contract**

- .29% "slice" share of Priest Rapids and Wanapum Dams (expires 2052)
- ~2.5 aMW Similar in shape to the BPA Slice product
- Pricing (~\$11/MWh) = Cost + Share of proceeds from auction of excess energy

## Conservation



Achieved Conservation Compared to Target (2010 - Present)

Achieved Target

Cumulative Conservation Savings (2007 - Present)



Mayfield Dam



# Our Resource Needs in the Future

Section 2

Our Hydro Projects Alone Don't Provide Enough Energy



## Our Hydro Projects Alone Don't Provide Enough Capacity

JANUARY PEAK DAY

#### **CURRENT PORTFOLIO**



NO BPA



# **Our Future Portfolio Needs**



## Section 2: Our Resource Needs in the Future A System in Transition



**Electricity Demand** 

# **Resource Characteristics**



## Predictability

• Do we know when it will be available?



## Dispatchability

• Can we control when it is available?



## Flexibility

• Can it respond quickly (e.g. within seconds) to changing demand?



## Sustained Peak Availability

• Is it available for a long time during peak demand?



## Emissions Profile

• How little carbon (or other pollutants) does it emit?

# **Other Considerations**



## Cost

• How much does it cost to build/purchase and to run?



## **Financial Risk**

• How uncertain are we about the value and/or cost of the resource?

# Types of Resources We Will Consider in this IRP



# Resource Options: BPA

**Section 3** 

## Section 3: Resource Options - BPA Current Product Options: Block Products



Flat Monthly Block (400 aMW, \$34.30/MWh)



Diurnal Monthly Block (400 aMW, \$34.50/MWh)



Diurnal Block with Shaping Capacity (400 aMW,



#### **Section 3: Resource Options - BPA**

## Current Product Options (Cont'd)



#### **Section 3: Resource Options - BPA**

# **BPA "Preference"** Power Products

#### **BPA's Statutes Require It To:**

- Provide power to public utilities (or "preference customers") upon request
- Amount of power is based upon the requesting utility's Total Retail Load less its own resources under "critical water" conditions ("Net Requirement")
- Net Requirement (NR) is determined annually based upon our load forecasts (Example to right):

aMW

- Total Retail Load 580
- Less: Tacoma Resources (Critical Water) 185

BPA "Net Requirement" 395



Critical "Slice" @ 2.96% 200

Block (Net Requirement less Slice) 195

Key Challenge: BPA has discretion over whether to allow any new resource we acquire to count against our net requirement

#### **Section 3: Resource Options - BPA**

## Current Contract Framework & Post-2028 Timeline

## **Regional Dialogue Contracts**



## Section 3: Resource Options - BPA Example: New Wind Plant



#### **Scenario**

- Tacoma Power decides to build a new wind plant as part of a "BPA diversification" strategy.
- The plant will generate 25 aMW a year. The remainder of load will be served from existing Tacoma projects and the BPA contract.

#### Implications

- New wind plant would not displace BPA Preference Power under current contract.
- If current contract timeline is applied, Tacoma would need to declare the resource to load by October 2023 to apply toward net requirement post 2028.

# Other Resource Options

**Section 4** 

# Other Hydropower

#### **Supply-side Generation**

Supply-side Storage Demand-side Resources Transmission

#### Options

- Expand generating capabilities at existing projects
- Contract with other hydropower supplier

#### Advantages

- Renewable
- Flexible
- Uniquely positioned to integrate other renewables

- Licensing
- Operating constraints
- Hydro variability
- Rising costs of fish mitigation



# Wind

#### Supply-side Generation

Supply-side Storage Demand-side Resources Transmission

## Options

- Contract vs. build
- Location
- With or without storage

#### Advantages

- Renewable
- Decent winter output

- Not very predictable
- Not dispatchable
- Transmission constraints



Solar

#### Supply-side Generation

Supply-side Storage Demand-side Resources Transmission

# OptionsAdvantages• Contract vs. build<br/>• Location<br/>• With or without<br/>storage• Renewable<br/>• Fairly predictable• Location<br/>• Fairly predictable

- Low winter output
- Not dispatchable



#### Supply-side Generation Supply-side Storage Demand-side Resources Transmission

#### **Section 4: Other Resource Options**

# **Pumped Storage**





#### Supply-side Generation Supply-side Storage Demand-side Resources Transmission

# **Battery Storage**

#### Options

- Independent
- Combined with wind and/or solar

#### Advantages

- Carbon-free
- Dispatchable & flexible
- Modular

- Limited duration
- Limited lifespan



Supply-side Generation Supply-side Storage **Demand-side Resources** Transmission

#### **Section 4: Other Resource Options**

# Conservation

#### Examples

- Weatherization
- More efficient lighting
- Improved HVAC systems

#### Advantages

- Carbon-free
- Reliable
- Modular
- No need for longdistance transmission

- Not dispatchable
- Easy opportunities waning



Supply-side Generation Supply-side Storage **Demand-side Resources** Transmission

#### **Section 4: Other Resource Options**

# **Demand Response**

#### Options

- Agreements with large industrial customers
- Interaction with residential/commercial heating equipment (thermostats, water heaters, etc.)

#### Advantages

- Carbon-free
- Dispatchable
- No need for long-distance transmission

- Current market structure keeps incentives for capacity products like DR low
- Administrative costs of residential/small commercial DR program



# Summary



# Other Promising Resources for the Future

#### Supply-Side: Renewable Hydrogen

• Using surplus renewable energy to convert water into hydrogen gas, which is used later as fuel for transportation, industrial processes or power generation

#### Supply-Side: New Battery Technologies

• Lithium-sulfur, solid-state, vanadium-flow, potassium-ion, silicon batteries, etc.

#### Supply-Side: Small Modular Nuclear

• "Smaller, safer, cheaper" nuclear power

#### Supply or Demand-Side: Formic Acid

• A safer, more efficient fuel cell

#### Demand-Side: Self-Generation with Storage

 Incentivizing customers to store behind-the-meter power generation and use it when it is most beneficial to the grid

#### Demand-Side: Vehicle-to-Grid Storage

Demand response using electric vehicle batteries

#### Demand-Side: Rate Design

• Time-of-use rates, real-time pricing, time-varying demand charges, critical peak pricing, etc.

# Next Steps

**Section 5** 

#### **Section 5: Next Steps**

# Action Items for Resources Considered in 2020 IRP

#### **Regional Engagement**

- Working to gain more clarity on BPA product options for 2028
- Seeking more flexibility from BPA in resource dedication policies post-2028

#### **Modeling Tools**

Starting to model resources in system model

#### **Resource Cost Estimates**

Estimating costs specifically for Tacoma Power

#### **Stakeholder Engagement**

 Working on plan (schedule, invite list, etc.) for community input meetings (to start around mid-January)

#### **Section 5: Next Steps**

# Anticipated Study Session Schedule

|    |                                           | Study Session Date   |
|----|-------------------------------------------|----------------------|
| 1  | Resource Planning 101                     | August 28 (complete) |
|    | Resource Adequacy                         | September 11         |
| 2  | Resource Adequacy                         | October 9 (complete) |
| 3  | Our Current Portfolio & Resource Options  | October 23 (today)   |
| 4  | Small Nuclear Reactors                    | November 13          |
| 5  | Energy Storage                            | December 4           |
| 6  | Load Management                           | TBD (2020)           |
| 7  | Load forecast, Current Position & Metrics | TBD (2020)           |
| 8  | Scenarios & Resources Considered          | TBD (2020)           |
| 9  | Preliminary Analysis Results              | TBD (2020)           |
| 10 | Final Results & Portfolio Recommendation  | TBD (2020)           |