Serving our customers

Integrated Resource Plan Public Workshop 2 Key Inputs & Assumptions

March 11, 2020

WELCOME! Thanks for coming back for Round 2.

2

3

Tacoma Power's Current Portfolio

Conservation Potential Assessment

Base Case Load Forecast

Base Case WECC Build & Prices

6 Scenarios

Next Steps and Action Items

Portfolio Selection Metrics How will we evaluate different portfolios?

Reminder of IRP Process

Step 1: Create set of potential portfolios

Add resources to existing portfolio to fill gaps

Resource Adequacy

CETA compliance

Resource Adequacy (RA) Standard

What is Resource Adequacy?

✓ Having enough resource to serve loads

What is a Resource Adequacy Standard?

✓ Metric + Maximum Threshold

Principles Used to Select a Standard

- ✓ Probabilistic (evaluates outcomes over all simulations)
- \checkmark Choose from common standards used elsewhere
- ✓ Address three key dimensions of inadequacy events
 - Duration
 - Magnitude
 - Frequency
- ✓ Balance high reliability standards with costs

PORTFOLIO SELECTION METRICS

No more than 2.4 hours per year when we're short on average

Loss of Load Hours (LOLH) of 2.4 per year Shortage of no more than 0.001% of total load across the year on average

Normalized Expected Unserved Energy (NEUE) of 0.001% per year No more than 2 days when we're short over 10 years (0.2 days per year) on average Loss of Load Expectation (LOLE) of 0.2 days per year

ADEQUATE if all three standards are met

INADEQUATE if any of the three are not met

CETA Compliance

CETA Rule

 ✓ 100% of load met by non-emitting resources <u>or alternative</u> <u>compliance</u> 2030-2044 (up to 20% from alternative compliance)

COMPLIANT if 80% or more of load is served by carbon-free power

NON-COMPLIANT if less than 80% of load is served by carbon-free power

Calculate net present value (NPV) of costs for each simulation

Costs <

- Capital Expenditure
- Operation & Maintenance
- Purchased Power
- Transmission
- Renewable Energy Certificates (RECs) to comply with I-937 & CETA
- Social Cost of Carbon Emissions

Offsets to Costs

• Power Market Sales less GET

Values determined by Department of Commerce rulemaking

Year in which emissions occur or are avoided	Social Cost of Carbon Dioxide (in 2018 dollars per metric ton)
2020	\$74
2025	\$81
2030	\$87
2035	\$93
2040	\$100
2045	\$106
2050	\$113

Applications

- ✓ Direct emissions from generation + leakage
- ✓ Emissions in market purchases

How do we calculate expected cost? TACOMA PUBLIC UTILITIES

PORTFOLIO SELECTION METRICS

14

How do we evaluate financial risk?

PORTFOLIO SELECTION METRICS

What do we do with the information?

Ability to Change Course

Five-point scale to qualitatively reflect the value of having flexibility to adjust to a changing world.

5

Δ

3

- Demand-side resources (conservation, demand response) that can be invested in piecemeal rather than all at once.
- Short-term contracts (<10 years)
- Medium-term contracts (10 to 15 years) with output that cannot be adjusted
- Long-term contracts with output that adjusts based on need (e.g. BPA)
- Long-term contracts (>15 years) with output that cannot be adjusted
- Any large resources that we build or acquire

Tacoma Power's Current Portfolio What resources do we have today?

Our Resources Today

Section 1: Our Resources

Our Hydro Projects

- 63% of Tacoma's average generation
- Total generating capacity = 466MW
- Significant storage and flexibility at Mossyrock
- Continuous outflow at Mayfield
- Diminished storage at Cowlitz due to Riffe Lake upper seismic operating limit

- 22% of Tacoma's average generation
- Total generating capacity = 116MW
- Limited storage and some shaping flexibility at Alder
- Continuous outflow at LaGrande

- 12% of Tacoma's average generation
- Total generating capacity = 135MW
- Flexible when there are sufficient flows

- 2% of Tacoma's average generation
- Total generating capacity = 13MW
- Run-of-river operations

BPA Purchased Power

Overview

- BPA is a Federal Power Marketing Agency
 - ✓ 21 US Army Corp of Engineer Dams (14,650 MW)
 - ✓ 10 Bureau of Reclamation Dams (7,800 MW)
 - ✓ Columbia Generating Station (Nuclear, 1,100 MW)
 - ✓ Several Wind Generation contracts (58 aMW)
- Power is sold at cost (Currently ~ \$32/MWh)
- Tacoma Power has been a BPA customer since 1940
- Tacoma Power is BPA's 4th largest customer (~\$120M/year, ~5.5% of BPA's total load)
- Current Contract Expires September 2028

BONNEVILLE POWER ADMINISTRATION

BPA Slice/Block Product

CURRENT PORTFOLIO

BPA "Preference" Power Products

BPA's statutes require it to:

- Provide power to public utilities (or "preference customers") upon request
- Amount of power is based upon the requesting utility's Total Retail Load less its own resources under "critical water" conditions ("Net Requirement")
- Net Requirement (NR) is determined annually based upon our load forecasts (Example to right):

Key Challenge: BPA has discretion over whether to allow any new resource we acquire to count against our net requirement

Columbia Basin Hydro

- 5 Irrigation Canals (Staggered Terms 2022-2026)
- ~27 aMW in months of March through October
- Pricing (~\$29/MWh) = Cost (~\$12/MWh) + Incentive Payment (~\$17/MWh)

Grant County Contract

- .29% "slice" share of Priest Rapids and Wanapum Dams (expires 2052)
- ~2.5 aMW Similar in shape to the BPA Slice product
- Pricing (~\$11/MWh) = Cost + Share of proceeds from auction of excess energy

Conservation

aMW

Achieved Conservation Compared to Target (2010 - Present)

📕 Achieved 🛛 🗖 Target

Cumulative Conservation Savings (2007 - Present)

TACOMA 턑 POWER

TACOMA PUBLIC UTILITIES

Conservation Potential Assessment How much conservation can we acquire? How much should we acquire?

- 1. Role of CPA in Planning
- 2. Types of Potential
- 3. Conservation History
- 4. Conservation Plans
- 5. Factors Impacting CPA Results
- 6. Recent CPA Results

Conservation Potential Assessment (CPA) data output used in IRP to model conservation impacts on load forecast

Identify measures

- With net benefit to the service area
- With utility costs lower than generation
- That improve the load-resource balance
- For development in conservation acquisition plan

The Energy Independence Act requires qualifying utilities to determine their conservation potential using "methodologies consistent with those used by the Pacific Northwest Electric Power and conservation planning council" (19.285.040(1)(a) RCW)

The Energy Independence Act is codified in WAC 194-37 which requires qualifying utilities to establish a:

- 10-year conservation resource potential every two-years
- Biennial conservation target that is "no less than its pro rata share of its ten-year potential."

Vc	Technical Potential			
	Market Barriers	Achievable Technical Potential		
IRP		Not Cost Effective	Achievable Economic Potential	

Achievable economic potential simplified here. Due to BPA contract requirements, conservation results in purchase of less BPA resource.

Conservation Accomplishments

Consistently achieve beyond our target

Getting harder to acquire savings

TACOMA S POWER

2019 By sector

- 29% Residential
- 71%Commercial/Industrial

Major Factors Affecting Potential

End-use saturation and efficiency levels

Baselines – codes, standards, markets

Recent accomplishments

Measure assumptions

New technology

Avoided price forecasts

TRC Forecast Avoided Costs

Residential

Weatherization

Heating Systems

Consumer Products

New Construction & Custom Projects

Quick Energy Savers

Hard to Reach -Owner Occupied -Rentals/Apartments -Agency Partnerships

Commercial/Industrial

Bright Rebates

Custom Retrofit

Equipment Rebates

New Construction

Strategic Energy Management

Other

NEEA

Distribution Efficiency

	Achievable	Economic	
	Technical	Achievable	Percent
	Potential	Potential	2039
	(GWh)	(GWh)	Baseline
Residential	355	84	4.0%
Commercial	248	171	13.6%
Industrial	115	94	5.9%
JBLM Residential	7	2	5.0%
JBLM Commercial	31	22	7.5%
Street Lighting	6	6	31.2%
Distribution Efficiency	14	11	0.2%
Total	775	389	8.0%

Residential Potential: 84,029 MWh

ΤΔCOMΔ 📚 POWFR

TACOMA PUBLIC UTILITIES

Lighting accomplishments and federal standards impact remaining potential

Fewer economic weatherization measures make it more difficult to implement the program

A combination of Energy Star appliances will eventually become a significant opportunity
Commercial Potential: 171,549 MWh TACOMA S POWER

Lighting is nearly 30% of commercial consumption and 72% this sector's conservation potential

Existing buildings account for 65% of the sector potential 62% of sector potential is from office, retail, school, hospital and misc. segments

Industrial Potential: 94,397 MWh

POWFR

PUBLIC UTILITIES

ΤΔϹΟΜΔ 苯

Like previous results, motors continue to dominate industrial potential, about 60% of sector potential Lighting is a strong 27% of the sector potential

JBLM Commercial: 21,569 MWh

TACOMA 葏 POWFR

PUBLIC UTILITIES

Like civilian commercial, lighting dominates at 74% of potential

Combined HVAC potential contributes 14%

JBLM potential assumes a slower implementation

On/Off Street Lighting: 5,649 MWh

Spread among many different wattage and fixtures types About 50% in the 100 and 400 watt equivalent

TACOMA PUBLIC UTILITIES

ΤΔϹΟΜΔ 苯

WFR

By the year 2039, existing state building codes and federal energy standards on equipment are projected to reduce overall load by 122,119 MWh (built into the forecast)

Sector	Impact (MWh)	% of Baseline Load
Residential	44,678	~2.1%
Commercial	60,067	~4.5%
Industrial	5,727	~ 0.1%
JBLM	11,647	~1.0%

Base Case Load Forecast How much load do we expect in our base case?

1. Introduction to Load Forecasting

2. National Trends in Electricity Use

3. Critical Drivers

4. Forecasting Methodology

5. Forecast Products

This is where we answer the question "what is a load forecast?"

Introduction to Load Forecasting

Tacoma Power is an electric power service provider.

As an electric power provider, Tacoma Power energizes everything from street lights to large industrial operations.

We call the collection of all our retail services our system. The electric power that's consumed on our system is called system load.

Introduction to Load Forecasting

Tacoma Power stands ready to serve every customer's need at every moment.

Tacoma Power does this by securing adequate infrastructure and resources.

Transmission & Distribution

Owned Hydroelectric Generation

Wholesale Transactions

Contracts & PPAs

Tacoma Power relies on real-time, short-term, and long-term forecasts to know how much infrastructure and resource will be adequate at every moment.

Introduction to Load Forecasting

Tacoma Power's long term load forecast is the subject of this presentation.

Generally speaking, long-term load forecasts inform long-term infrastructure and resource planning.

Utilities need long-term load forecasts because it usually takes a long time to build things like power plants, substations, and transmission infrastructure.

Introduction to Load Forecasting

The long term load forecast is a projection of Tacoma Power's service requirements.

- Tacoma Power's long-term load forecast spans the next twenty years.
- The objective of the long-term load forecast is to provide a "businessas-usual case". No assumptions about new policies or technologies are included.
- The long-term load forecast is developed using a set of models that consider economic, demographic, weather, and service area trends.
- Long term load forecasts are not a prediction of what will happen, but a modeled projection of what may happen given certain assumptions and methodologies.

This is where we take a step back.

National Trends in Electricity Use

Historically, electricity demand was coupled with economic growth. Around 2000, this relationship changed.

U.S. Department of Energy | Staff Report on Electricity Markets and Reliability, August 2017

The decline in the demand growth rate can be attributed to a variety of factors.

Estimated U.S. Energy Savings from Structural Changes in the Economy and Energy Efficiency *1980-2016*

Primary Energy Consumption (quads)

250 ----

LOAD FORECAST

U.S. Department of Energy | Staff Report on Electricity Markets and Reliability, August 2017

A changing policy and market environment has made it difficult to accurately forecast national electric load.

U.S. Department of Energy | Staff Report on Electricity Markets and Reliability, August 2017

LOAD FORECAST

The same environment has made it difficult to accurately forecast Tacoma Power's electric load.

Tacoma Power Annual Load Projections 2019-2039

The most recent Annual Energy Outlook projects electricity demand to grow slowly through 2050.

percentage growth (three-year rolling average)

U.S. Energy Information Administration | Annual Energy Outlook 2019

This is where we answer the question "what affects load?"

Critical Drivers

Critical Drivers

Many factors affect electric load and our forecast assumes specific values for these factors throughout the forecast horizon.

Load is most notably driven by the weather, the economy, and the demography of a service territory.

We purchase weather data from an independent firm that specializes in weather and environmental information.

We purchase economic and demographic data from an independent firm that specializes in long-term county-level economic and demographic data series.

The economic and demographic inputs considered by our models are specific to Pierce County.

Tacoma Power's service territory is contained within Pierce County.

Critical Drivers

Over the historical period, the economy has experienced change. Over the forecast horizon, the economy will continue to change.

	Compound Annual Growth Rate
	Forecast Horizon
Residence Adjustment	1.69%
Non-Industrial Retail Rates	4.20%
Non-Industrial Energy Efficiency Acquisitions	1.92%

Critical Drivers

The 2019 Forecast Weather Normal is based on 10 years of historical weather.

Average Daily Temperature

LOAD FORECAST

forecast normal vs. 10-year historical basis

This is where we answer the question "how is the forecast derived?"

Forecasting Methodology

Tacoma Power's System Energy Load Forecast is the sum of a non-industrial forecast and an industrial forecast.

Forecast

Load Forecast

System Load Forecast

Within the non-industrial and industrial load forecasts, we account for conservation and codes & standards

The forecasts of conservation and codes & standards are provided by Tacoma Power's Conservation Potential Assessment.

The non-industrial load forecast is the product of two separate forecasts.

Non-Industrial loads are relatively weather-sensitive. Variability in weather can distort underlying trends in consumption. We adjust for weather-driven variability through a process called 'Weather Normalization'.

The industrial forecast is the sum of 11 forecasts.

We create individual load forecasts for each of the industrial loads existing or expected within our service territory. Forecasts are based on historical records of consumption and account executive knowledge of customer expectations.

Tacoma Power's System Energy Load Forecast is the sum of a non-industrial forecast and an industrial forecast.

Forecast

Industrial Load Forecast System Load Forecast

This is where we discuss the results of the forecasting process.

Forecast Products

Let's begin with the non-industrial load forecast.

The non-industrial load forecast is the product of two separate forecasts.

Tacoma Power's retail customer base is projected to grow over the forecast horizon.

LOAD FORECAST

68

Use-Per-Customer is projected to decline over the forecast horizon.

The 2019 Use-Per-Customer Foreacast

LOAD FORECAST

69

With the customer and use-per-customer forecasts, nonindustrial load is projected to decline over the forecast horizon.

LOAD FORECAST

Recall, we account for conservation and codes & standards within the non-industrial and industrial forecasts.

The forecasts of conservation and codes & standards are provided by Tacoma Power's Conservation Potential Assessment.

Conservation and Codes & Standards accelerate the projected decline in non-industrial load.

The 2019 Non-Industrial Load Forecast

72
Forecast Products

Let's now discuss the industrial load forecast.

Pre-Conservation Industrial Forecast

The industrial forecast is the sum of 11 forecasts.

Forecast Products

Industrial load is expected to grow within the forecast horizon.

The Monthly Industrial Load Forecast

Again, we account for conservation and codes & standards within the non-industrial and industrial forecasts.

The forecasts of conservation and codes & standards are provided by Tacoma Power's Conservation Potential Assessment.

Forecast Products

After accounting for conservation and codes & standards, the projected growth in industrial load is reduced.

The 2019 Industrial Load Forecast Industrial Load (aMW) Historica 0 2019 Industrial Forecast (without conservation and codes & standards) 2019 Forecast (with conservation and codes & standards) 040 🚯 🐇 000 d % a 🐇

Forecast Products

After we account for conservation and codes & standards, system load is projected to decline.

2019 System Load Forecast

LOAD FORECAST

Base Case WECC Buildout & Prices How many resources will be built in our base case scenario? What will prices look like in our base case scenario?

"All models are wrong, but some are useful."

~George E.P. Box (1919 - 2013)

The AURORA model is useful when:

- its inputs reflect actual or plausible realities
- its outputs are directionally accurate

The "WECC"

Western Electric Coordinating Council:

- 2 Canadian Provinces
- 11 Western States
- Northern Baja Mexico

WECC-US Utility Fun Facts:

- 147 Investor-Owned (~75% of load)
- 241 Non-Investor-Owned (~25% of load)

In 2018, the combined nameplate capacity of all utilityscale resources in the WECC was 258 GW.

Approximately 1,300 MW of wind and solar capacity were added and natural gas capacity increased by 900 MW.

WECC Load Forecast

*Average annual load growth of 0.7%

WECC 2045 Resource Buildout

TACOMA 蓬 POWFR

PUBLIC UTILITIES

35 GW Gas

*1.3 GW of Battery Energy Storage Assumed (CA mandate)

WECC 2045 Economic Retirement

6600 MW Coal (not including 7GW of announced early retirements) 400 MW Gas

WECC Emissions

32% reduction in WECC emissions rate by 204535% reduction in WA emissions rate by 2045

What does the Aurora model say?

Price Forecast

Average Annual Price Forecast

Hourly Price Forecast Volatility

Preliminary Scenarios

Reminder from Last Time

Scenarios

Base Case

- Business-as-usual load forecast
- Existing laws and trends

Alternative Scenario 1

• Alternative set of assumptions 1

Alternative Scenario 2

 Another alternative set of assumptions 2

Random Variability

Run many simulations with different weather & prices

Run many simulations with different weather & prices

Run many simulations with different weather & prices

Changes to Tacoma Power Service Area

			Working	
LOCAL CHANGES	Employees	%	Group	%
Population growth	17	77%	5	71%
Acceleration of electric vehicle adoption	13	59%	4	57%
Changing energy usage patterns due to climate change	11	50%	4	57%
Economic growth	8	36%	3	43%
Economic decline	2	9%	2	29%
Even more efficient energy-using equipment	10	45%	1	14%
Addition of new large load(s)	7	32%	1	14%
Loss of large load(s)	5	23%	1	14%
Increased use of natural gas for heating	2	9%	1	14%
Increased adoption of rooftop solar	2	9%	1	14%
Infrastructure inadequacies (water & sewer)		0%	1	14%
Increased use of electricity for heating	6	27%	0	0%
Population decline	0	0%	0	0%
Policy changes forcing electrification	1	5%		0%
Continued gentrification and housing issues	1	5%		0%
Economic uncertainty	1	5%		0%
Utilities becoming more energy integrators than power suppliers	1	5%		0%
Figuring out how to use lots of power between 10AM and 2PM	1	5%		0%

General agreement that growth is likely

Policy Changes

	Employee		Stakehold	
City, County or Statewide Law	Survey	%	er Survey	%
All new buildings must be built with EV chargers	14	64%	6	86%
All new buildings must be "solar-ready"	3	14%	4	57%
Adoption of a national or statewide tax on carbon	14	64%	3	43%
City, county or statewide requirement that all ships docked at Port of Tacoma run on electricity rather than diesel while docked Adoption of a national or statewide cap and trade program for	13	59%	3	43%
carbon	11	50%	3	43%
City, county or statewide ban on natural gas in new homes	8	36%	2	29%
Clean Fuel Standard		0%	1	14%
Moratorium on fracking	1	5%		0%
IOUs become public and controlled by the federal government	1	5%		0%
RA compliance laws	1	5%		0%
Early retirement of CGS	1	5%		0%

Some agreement that vehicle/port electrification policies and a price on carbon are likely.

92

Employee Survey Results

93

What are the biggest changes that we will see in the power industry over the next 20 years?

	Number of
Types of Change	Responses
Technological solutions to integrating renewables	8
Changing markets	6
Electrification	5
Acceleration of green policies/laws	5
DERs (Rooftop Solar, Home Batteries, etc.)	3
Climate change impacts on our hydro projects	3
Policies outside of WA that are bad for Tacoma Power	3
Reductions in consumption	3
Reliability challenges due to more renewables	3
More renewables	2
Changing customer expectations for information & products	2
Cybersecurity	1
Transmission constraints for Tacoma Power	1
Increased AC	1
Natural gas price increases	1

Employee Survey

Large solar projects/PURPA puts (1MW+) Would be good to see climate goals & Tacoma EAP considered in resource planning Power industry is nationalized Massive electrification No transmission into & out of Tacoma due to BPA changes to OATT practices & policies Cybersecurity costs become high Increased drought events (frequency & duration) Transmission constraints in Puget Sound as portfolios become more varied Increased expectation that Tacoma Power lead the way on citywide GHG reduction Reduced liquidity due to EIM participation

Working Group Survey

Energy storage, intelligent controls & utility process/controls that easily integrate renewables Infrastructure inadequacies (water & sewer)

Resource Adequacy

- Loads
- Water supply
- Energy supply from contracted resources (BPA, etc.)

Portfolio Costs

- Market price levels
- Market price volatility
- Generation costs
- Contract costs

Carbon Emissions/ CETA compliance

- Market emissions rate
- CETA rules for spot market purchases

PRELIMINARY SCENARIOS

How will prices change by 2040?

Creating Scenarios

"Cruise Control" (Base Case)

PRELIMINARY SCENARIOS

"Reliability Reigns"

"Technology Solves Everything"

HIGH What does the world look like? Low-cost solutions allow utilities to efficiently and cost-effectively integrate large quantities of renewable resources. This includes demand-side LOW HIGH resources optimized for grid integration (electric vehicles, demand response, large flexible loads, etc.) and supply-side resources like storage. Because of the diversity of demand-side resources and significant investments in renewables, energy market prices are both stable and low. LOW DEMAND **RENEWABLES STORAGE** Accelerated decline in Strong reliance on Low cost demand-side costs Substantial buildout resources **NATURAL GAS COAL RETIREMENTS CARBON POLICY** Low gas prices due to Announced & **Existing policies** low demand for economic retirements natural gas

Next Steps and Action Items What are we covering next?

Workshop Plan

Current Resource Performance and Future Options

