UTILITY ASSISTANCE PROGRAMS - UPDATE

January 8, 2020 Francine Artis

2019 ASSISTANCE ACTIVITIES AT A GLANCE

UTILITY ASSISTANCE PROVIDED

2018 vs 2019

Internal Assistance Funds

(Discount Rates/BCAP/Emergency Assistance)

COMMUNITY OUTREACH

COMMUNITY OUTREACH

Eastside Community Resource Fair

Boze Elementary Fair

Giaudrone Middle School Fair

QUESTIONS?

Our Energy Future Series

Session 6: Pump Storage Hydro

Michael Hill

Tacoma Public Utilities Sr. Power Analyst 253-779-7796

What is Pump Storage Hydro?
How does it work?
Summary
Existing & proposed projects
IRP update

What is pump storage hydro?

Section 1: What is Pump Storage Hydro?

<u>Pump Storage Hydro</u> (PSH) is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation.

P/G efficiency:

 $\frac{\text{Generation energy } (downhill)}{\text{Pumping energy } (uphill)} = ~80\%$

Requirements:

- ✓ Topology elevation between upper & lower basins
- ✓ Power lines Access to transmission grid
- ✓ Water Supply

Section 1: What is Pump Storage Hydro?

Types of PSH

Closed - Loop

- Disconnected from any existing waterway
- √ Fewer environmental impacts
- ✓ Makeup water constraints

Open - Loop

- ✓ Connected to existing waterway
- ✓ Ready water supply
- ✓ Additional environmental impacts

How does it work?

Section 2: How does it work?

Traditional purpose

- ✓ Existing PSH fleet constructed mid- to late-1970s
- ✓ Load Shaping and Peak Shaving
- ✓ Energy Arbitrage, Peak/Off-Peak

Section 2: How does it work?

New PSH interests

- ✓ Increase penetration of variable renewable energy resources
- ✓ Electricity Market Designs: Energy, Capacity and Ancillary Services
- ✓ New Technology Variable Speed Pumps/Generators

Existing and future projects

Section 3: Existing PSH projects

Where in the US?

Section 3: Proposed PSH Projects

Where in the US?

Source: FERC Staff, September 1, 2019

Section 3: Possible PSH Projects

Pump Storage Hydro at Cowlitz?

Section 3: Possible PSH Projects

Pump Storage at Cowlitz

Opportunities

- ✓ Existing project/reservoirs
- ✓ Open 3rd pump/generator bay at Mossyrock
- ✓ Promising economics

Challenges

- ✓ Environmental impacts
- ✓ Additional upper reservoir
- √ Re-opens FERC licensing process
- ✓ Transmission: located near critical flowgate
- ✓ Scale (250 300 MW)
- √ Co-operations

Benefits and challenges

Section 4: Benefits & Challenges

Advantages of Pump Storage Hydro:

Flexible and reliable

- ✓ Reacts to network fluctuations
- ✓ Contingency outages
- ✓ Load following
- √ Absorbs excess generation
- ✓ Reserve output at low wind or lack of sunshine

Concepts

- √ Hybrid Combining pumped storage with wind and/or solar generation
- ✓ Symbiotic Renewable Resource used to integrate Renewable Energy with clean hydropower
- ✓ "Green" battery Currently the most viable utility-scale energy storage technology

Reservoir management and flood control

Exceptional lifetime of more than 80 years

Section 4: Benefits & Challenges

Challenges of Pump Storage Hydro

Projects are Capital Intensive

- ✓ Development (\$millions)
- ✓ Construction (\$billions)

Regulatory

√ FERC Licensing and permitting

Scale

- ✓ Capitalization Equity vs. PPA, Governance vs. Operations, etc.
- ✓ Joint operations Shared costs/benefits, project optimization

Market Limitations

- ✓ Missing revenue streams deriving value from Energy & Ancillary Services (AS).
- ✓ Market Design lack of market structure for monetizing value clean dispatchable generation resources.

Section 4: Benefits & Challenges

Missing Money

Market prices do not fully reflect the value of investment necessary to meet load

- Insufficient Resource
 Adequacy standards
 undervalue existing clean
 dispatchable generation
 such as hydro
- Inadequate incentives to invest in new forms of dispatchable generation like Pump Storage Hydro

* Environment costs, taxes, etc. 17

Summary

Section 5: Summary

Future State: Pump Storage Hydro part of a well-integrated grid

Benefits

- Complements Renewable Energy Resources
- Very Flexible Resource
- Improves Reliability
- Longevity

Challenges

- Long-term Economics
- Development costs
- Construction time
- Scale
- Market Design

IRP Update

Stakeholder Input Process

Working Group Workshops

- Smaller group selected by utility with goals of ensuring <u>committed participation</u> and <u>balance</u> <u>of perspectives</u>
- Responsibility for reviewing materials and providing feedback on assumptions, analysis, etc.

Input Opportunities for Other Community Members

- Observe & comment during open comment time
- Written comment on workshop materials
- Online contact form for general comments

General Information Sharing

- Email distribution list to interested parties
- All materials to be posted on website

Workshop 1 (February 24)

• Introduction to process & key issues

Workshop 2 (March 11)

Key inputs

Workshop 3 (April 27)

Analysis framework

Workshop 4 (June 11)

Analysis results

Working Group Membership

Selected with goals of ensuring committed participation and balance of perspectives

Customer Classes

- Residential (1 to 2 representatives)
- Small business (1 to 2 representatives)
- Large commercial (1 to 2 representatives)
- Industrial (1 to 2 representatives)
- JBLM (1 representative)
- Puyallup Tribe of Indians (1 representative)

Environment & Sustainability

Other Expertise

- Regional organizations (1 to 2 representatives)
- Local organizations (1 to 2 representatives)
- NW Power & Conservation Council (1) representative)
- Academic (1 representative)

Anticipated 2020 Study Session Schedule

	Topic	Date
1	Resource planning 101	August 28 (complete)
2	Resource adequacy	October 9 (complete)
3	Our current portfolio & resource options	October 23 (complete)
4	Small nuclear reactors	November 13 (complete)
5	Energy storage	December 4 (complete)
6	Pump storage hydro	January 7 (today)
7	Key inputs: Load & price forecasts, Preliminary metrics, resource options & scenarios	March 25
8	Final metrics, analysis of uncertainty, current resource need and final resource options & scenarios to model	May 13
9	Analysis results & recommendations	July 8
10	(If needed) Revised Results & Recommendations	July 22
11	Approve IRP (BOARD MEETING)	August 12

IRP Schedule

2020 Aniticpated 10 11 12 **Activities** Completion Draft base case system model results (current portfolio) 20-Mar-20 **MODEL & ANALYSIS** Final portfolio performance metrics selected 15-May-20 Final resources & scenarios selected for evaluation 15-May-20 Full draft analysis results 1-Jun-20 Final draft IRP document complete 31-Jul-20 14-Aug-20 Submit IRP Publish IRP & communicate findings externally 31-Dec-20 Stakeholder Workshops 11-Jun-20 22-Jul-20 **PUB Study Sessions PUB Approval of IRP** 12-Aug-20